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Abstract. A new method is suggested to investigate the mechanism of the anomalous Hall effect (AHE) in
ferromagnetic metals. Using a double layer of a ferromagnet and a normal metal of increasing thickness one
can manipulate the AHE in the ferromagnet without changing the ferromagnet’s structure and electronic
properties. The conduction electrons from the normal metal carry their drift velocity across the interface
into the ferromagnetic film and induce an additional AHE conductance ∆Gxy . Its dependence on the mean
free path in the normal metal distinguishes between the side jump and the skew scattering mechanisms
for the AHE in the ferromagnet.

PACS. 72.10.-d Theory of electronic transport; scattering mechanisms – 72.25.Mk Spin transport through
interfaces – 73.40.Jn Metal-to-metal contacts – 72.25.Ba Spin polarized transport in metals

1 Introduction

In ferromagnetic metals and metals with magnetic impu-
rities one observes two contributions to the Hall effect,
(i) the normal Hall effect and (ii) the anomalous Hall ef-
fect (AHE). The AHE is caused by spin-orbit scattering
through the interaction of the conduction-electron spin
with the magnetic moments of the sample. The anoma-
lous Hall effect was already observed by Hall more than a
century ago [1]. However, theoretically it is a rather com-
plicated problem. There are two main mechanisms dis-
cussed in the literature, (a) skew scattering and (b) side
jump. Both require a scattering mechanism for the con-
duction electrons and vanish in pure samples. The first
models of skew scattering were developed by Karpulus
and Luttinger [2] and Smit [3], while the side jump was
proposed by Berger [4]. Due to its possible application in
spintronics, the anomalous Hall effect has experienced a
renewed interest during the past years [5–8] (for further
references see [9]). Recently an additional mechanism has
been under discussion which is connected with the Berry
phase and believed to occur even in the absence of any
scattering (see for example [10]). Here we restrict the dis-
cussion to the skew scattering and the side jump.

The theory of the AHE is far from mature. For ex-
ample, some years ago our group measured the AHE of
vanadium impurities in alkali films [11]. The AHE was
positive in Cs and Rb hosts, close to zero in K hosts and
negative in Na hosts. Nobody understands the sign of the
AHE in these systems so far. The theory of a physical phe-
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nomenon cannot be considered satisfactory if one cannot
even predict the sign of the effect. Therefore an analysis
of the AHE is quite desirable. In particular a clear under-
standing of the importance of the different mechanism is
needed.

Skew scattering is due to the anisotropic scattering of
the conduction electrons by magnetic scattering centers.
The amplitude of the scattered wave depends on the scat-
tering angles (θ, φ) and shows left-right asymmetry. For
example if an electron with momentum k = (kx, 0, 0) in
the x-direction is scattered by a magnetic moment (po-
larized in the z-direction) then the integrated momen-
tum of the scattered wave has a finite component in the
(−y)-direction.

For the side jump the electron does not propagate
in the (−y)-direction after the scattering but the whole
scattered electron is displaced by the distance ∆y in the
(−y)-direction. Both mechanisms yield an AHE.

It is often stated that for skew scattering the anoma-
lous Hall resistivity ρyx is proportional to the resistivity
ρxx while for the side jump ρyx is proportional to the
square of the resistivity ρ2

xx. A number of experimental in-
vestigations applied this power law ρyx ∝ ρp

xx with p = 1
for skew scattering and p = 2 for the side jump to identify
the mechanism of the AHE by changing the resistivity of
their samples and analyzing the dependence of ρyx on ρxx.

On the other hand this power law between ρxx and ρyx

is only derived for a single spin and might not be fulfilled
in a real ferromagnet. Furthermore changing the resistiv-
ity of a ferromagnet can alter the magnetic scattering in
complex ways. It would be of considerable value to find
an experiment that distinguishes between skew scattering
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Fig. 1. A double layer consisting of a ferromagnetic film F
and a normal metal film N. In the presence of an electric field
the conduction electrons in N carry their larger drift velocity
into the lower layer F and create a large anomalous Hall ef-
fect (AHE) in F. Its dependence on the mean free path in N
identifies the origin of the AHE.

and side jump without changing the structure of the fer-
romagnet.

In this paper I suggest a new approach to investigate
the AHE of a ferromagnetic film experimentally. A thin
ferromagnetic film is used as the target of a scattering ex-
periment by exposing it to incident electrons. The momen-
tum of the incident electrons is varied and the electrons
are scattered by the magnetic moments. The (integrated)
angular scattering intensity is measured. This appears to
be a conventional scattering experiment but it is really a
measurement of the transport properties in a double layer
consisting of a ferromagnet and a normal metal. The prob-
ing electrons are the conduction electrons of the normal
metal film which cross the interface into the ferromagnetic
film.

Figure 1 shows the geometry and the idea of the pro-
posed experiment. A double layer consisting of a ferromag-
netic film F and a normal metal film N is prepared. The
normal metal film is condensed on top of the ferromag-
netic film. Its thickness and its mean free path (MFP)
can be increased in situ. The ferromagnetic film is pre-
pared with a much shorter MFP than the normal metal.
This simplifies the underlying physics and the evaluation
of the experiment.

In the presence of an electric field E (in the
x-direction) the electrons accumulate finite drift velocities
in the normal metal and the disordered ferromagnet. The
electrons of both metals cross the interface. The electrons
which cross from the normal metal into the ferromagnet
increase the current density in the upper layers of fer-
romagnetic film dramatically because they carry a much
larger drift velocity. This injected high current density in
the ferromagnet is proportional to the MFP in the normal
metal. It creates an additional AHE in F. If the AHE is
due to the side-jump mechanism then the injected current
yields an AHE conductance which is proportional to the
MFP ln in the normal metal. If the AHE is due to skew
scattering then a large fraction of the scattered electrons
returns into the normal metal and propagates there the
distance ln. This contribution to the AHE conductance
is proportional to the square of the MFP in the normal
metal. By changing the MFP in the normal metal one can

analyze the origin of the AHE in the ferromagnet without
changing the structure of the ferromagnet.

2 Skew scattering and side jump
in a ferromagnet

Since we have to calculated the AHE of an F/N double
layer (F stands for ferromagnet and N for normal metal)
we briefly recall the AHE resistivity for skew scattering
and the side jump in a ferromagnetic sample. The mag-
netic moments may be aligned in the z-direction. The sam-
ple is disordered and has a finite ρxx.

We treat the ferromagnet in the following model: the
conduction process is essentially carried by the spin-up
and -down s-electrons. I denote their densities as nσ, their
Fermi velocities as vσ and their relaxation times as τσ.
Furthermore the s-electrons are treated as quasi-free elec-
trons with an effective mass mσ, so that vσ = �kσ/mσ.
Since the d-electrons with their flat bands barely partic-
ipate in the conduction process their contribution to the
current is neglected. The d-bands with their large den-
sity of states serve mainly as final states for the scattered
s-electrons. Since the d-density of states for spin-up and
-down electrons is different one obtains different scatter-
ing times τ↑, τ↓ for spin-up and -down electrons. For our
purpose it is even more important that the d-scattering in
connection with the spin-orbit interaction in the d-states
is the essential source of the AHE. In this paper we are
interested in the effect of a specific sample arrangement
on the AHE. The AHE itself is described by phenomeno-
logical parameters and not calculated from first principles

In a disordered ferromagnet the scattering will be par-
tially potential scattering, i.e. spin-independent, and par-
tially magnetic or spin-dependent scattering. We describe
the potential scattering centers by their concentration ni

and their total scattering cross section ai (the index i for
impurity). Similarly the magnetic scattering centers have
the concentration nm with the scattering cross section amσ

(which depends on the spin σ of the conduction electrons).
Then the mean free paths lσ and the relaxation times τσ

of the conduction electrons with spin σ are

1
lσ

= (niai + nmamσ) ,
1
τσ

=
vσ

lσ

yielding the longitudinal resistivity

ρxx,σ =
mσ

nσe2τσ
.

Next we consider the transverse resistivity ρxy. We be-
gin with the skew scattering mechanism. In Figure 2a
an electron with spin σ propagates in the x-direction.
The wave experiences skew-scattering by the d-states. The
integrated momentum of the skew-scattered wave pos-
sesses an electron momentum in the negative y-direction
with the weight aAH,σ. Here aAH,σ is the AHE cross
section. It is defined so that −�kF aAH,σ is equal to
the (−y)-component of the integrated momentum of the
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Fig. 2. An (spin-up) electron wave with momentum
k =(kx, 0, 0) propagates in the x-direction. A part amσ of
the wave is skew-scattered by a magnetic moment and car-
ries a momentum in the (−y)-direction. (b) This time the side
jump displaces the scattered electrons wave by ∆yσ in the
(−y)-direction.

scattered wave. (A possible forward scattering should
be incorporated into the scattering cross section amσ.)
Any current in the x-direction generates a current in
the (−y)-direction with a transition rate of djy,σ/dt =
−jx,σ/τAH,σ where 1/τAH,σ = nm,σaAH,σvσ.

One obtains the following rate equations for the cur-
rent in the (x, y)-plane

djx,σ

dt
= −jx,σvσ (niai + nmamσ) + jy,σvσnmaAH,σ

+
e2nσ

mσ
Ex

djy,σ

dt
= −jx,σvσnmaAH,σ − jy,σvσ (niai + nmamσ)

+
e2nσ

mσ
Ey .

In the steady state one has djσ/dt = 0 and obtains the
resistivity tensor

(ρ) =
mσ

e2nσ

1
τσ

(
1 −lσnmaAH,σ

lσnmaAH,σ 1

)
.

The transverse resistivity ρyx,σ for the spin σ is

ρyx,σ = ρxx,σlσnmaAH,σ = ρxx,σ
nmaAH,σ

niai + nmamσ
. (1)

In Appendix B equation (1) is derived with a simple
hand-waving argument.

For the discussion below of the AHE in a F/N dou-
ble layer we keep the following result in mind: when
the electric field in the x-direction generates a current
density jx,σ then the skew scattering provides a current
source in the (−y)-direction with the strength djy,σ/dt =
−jx,σvσnmaAH,σ.

Equation (1) yields the well known statement that the
AHE resistivity ρyx,σ due to skew scattering is propor-
tional to the resistivity ρxx,σ, for a single spin direction!
Since the electron has two spins we have to (i) invert the
resistivity tensors (ρij)↑,↓ for each spin to obtain the con-
ductivity tensors (σij)↑,↓, (ii) add the two conductivity
tensors and (iii) invert the resulting tensor.

(ρ) =
(
(ρ)−1

↑ + (ρ)−1
↓

)−1

. (2)

Since the longitudinal resistivities ρxx,σ of spin-up and
-down electrons in the ferromagnet are generally quite dif-
ferent the original linearity between ρyx,σ and ρxx,σ for the
individual spin might be replaced by a more complicated
dependence.

For the side jump the electron does not propagate
in the (−y)-direction after the scattering but the whole
scattered electron is displaced by the distance ∆yσ in
the (−y)-direction. One can compare this displacement
of the electron in the side jump with the effect of the
skew scattering. In a skew scattering event a fraction
aAH,σ of an electron is “displaced” by the MFP lσ in
the (−y)-direction. Therefore one obtains the off-diagonal
AHE resistivity of the side jump by replacing aAH,σlσ in
equation (1) by amσ∆yσ. This yields for the side jump

ρyx,σ = ρxx,σ∆yσnmam,σ. (3)

If ρxx,σ is proportional to the density of mag-
netic scattering centers nm then ρyx,σ is propor-
tional to the square of ρxx,σ if the scattering cross
section amσ and the side jump are independent of
the resistivity, for a single spin direction! Again,
using equation (2) for the total AHE resistivity
might interfere with the quadratic relation. Furthermore
the parameters ai, amσ, aAH,σ ∆yσ are not independent of
the disorder. The scattering potential is generally not the
atomic potential but the deviation from the periodic po-
tential. This potential is generally not spherically symmet-
ric but is rather the gradient of a spherical potential. All
of the scattering parameters ai, amσ, aAH,σ and ∆yσ may
change in complicated ways with the disorder or alloying
of the ferromagnet. In particular the behavior of ∆yσ as a
function of disorder is very critical. As Berger showed the
side jump, which is caused by the spin-orbit interaction,
only becomes significant because the spin-orbit interaction
in the magnetic atoms can be enhanced by a large factor
which he estimated to be of the order of 3×104. Even the
smallest change in the local environment of the magnetic
atom could change this enhancement factor.

For the discussion below of the AHE in a F/N dou-
ble layer we keep the following result in mind: when the
electric field in the x-direction generates a current den-
sity jx,σ then the side jump slightly shifts the direction
of the current into the (−y)-direction. The resulting cur-
rent component in the (−y)-direction, −∆yσnmam,σ jx,σ,
is local. In contrast skew scattering generates a non-local
(−y)-component of the current which propagates away
from the scattering center.
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We summarize: the simple power law dependence of
ρyx on the resistivity ρxx for skew scattering and side jump
may not be reliable for the following reasons:

– the contribution of two kinds of electrical carriers in
ferromagnets, spin up and down electrons, destroys the
simple relation between ρyx and ρxx;

– the scattering parameters ai, amσ, aAH,σ and ∆yσ will
change in complicated ways with the disorder or alloy-
ing of the ferromagnet;

– the large enhancement of the spin-orbit interaction
(which determines the side-jump parameter) might be
sensitive to the disorder.

3 Skew scattering and side jump in a double
layer of ferromagnet and normal metal

Now we return to the geometry in Figure 1 and calcu-
late the AHE conductance of a F/N (ferromagnet/non-
magnetic metal) double layer. As before we assume that
the conduction in the ferromagnet is carried by the
s-electrons. The thickness and MFPs of the ferromagnetic
film are denoted as df , lσ for spin σ and dn, ln for the
normal metal film. Because the ferromagnetic and normal
metal films are in parallel their conductances would sim-
ply add if there would be no interface crossing between the
films. Without the crossing the normal metal film would
not contribute to the AHE.

When electrons cross the interface from the ferromag-
net into the normal metal the drift velocity of spin-up and
-down electrons can be different. Then the electrons carry
a spin current into the normal metal. If the normal metal
possesses a strong spin-orbit scattering then the spin cur-
rent itself can cause an AHE in the normal metal [12]. In
the present paper this would complicate the experiment.
Therefore we choose a normal metal with sufficient small
spin-orbit scattering (for example the alkali metals fulfill
this requirement perfectly).

The next task is to determine the interface crossing.
The density of s-electrons in 3d-ferromagnets is surpris-
ingly small. For example for Fe the Fermi energies of
s-electrons with majority and minority spins are given in
the literature as 2.25 eV and 0.5 eV [13]. We consider
here the case when the Fermi energies in the ferromagnet
are smaller than in the normal metal. Quasi-classically
all (s-)electrons in the ferromagnet which move towards
the interface (kz > 0) would cross into the normal metal
without reflection. In wave mechanics one obtains a small
reflection at the interface which can be taken care of by
a transmission factor t ≤ 1. During the calculation we
set t = 1; the effect of a smaller transmission is discussed
below.

Since all electrons in F close to the interface with
kz > 0 leave the ferromagnet the same number of elec-
trons has to return from N. That means that all electrons
with kz < 0 in the ferromagnet close to the interface have
crossed the interface from the normal metal. In the pres-
ence of an electric field in the x-direction these carry the
large drift velocity from the normal metal and inject a

large current density in the top layer of the ferromagnet.
We calculate this injected current by applying the (lin-
earized) Boltzmann equation using Chamber’s method of
the vector mean free path (VMFP) [14]. The method of
the VMFP is sketched in the appendix together with the
calculation of the injected currents for spin-up and -down
in the top layers of the ferromagnet.

The injected current (per width of the film) for spin
σ is

Ix, σ =
1
16

e2τn

mn

(
Nσmσv3

F,στσ

)
E =

e2nστn

mn

3
16

lσE

where Nσ is the density of electron states per spin in the
ferromagnet. This current flows in a thin layer of F whose
thickness is roughly half the MFP, i.e., lσ/2. It is propor-
tional to the relaxation time in the normal metal. The
interface conductance Gi

xx,σ due to the injected electrons
with spin σ is the product of the conductivity e2nστn/mn

times the thickness of (3/16) lσ,

Gi
xx,σ =

e2nστn

mn

3
16

lσ.

The conductivity consists of the electron density nσ of the
ferromagnetic spin component and the relaxation time and
effective mass of the normal conductor. The resulting lon-
gitudinal part of the conductance Gxx = Iin/E is similar
to the results by Fuchs [15] and Sondheimer [16] for thin
films but extended to sandwiches.

The injected current yields an additional large AHE.
The resulting contribution to the anomalous Hall conduc-
tance depends on the mechanism of the AHE.

Side jump: the electrons which carry the injected
current I i

x,σ in the ferromagnet contribute to the side
jump. The direction of the current is locally shifted
yielding a current component of ∆yσnmam,σI i

x,σ in the
(−y)-direction. Both spins together produce an additional
interface AHE conductance

Gi
xy =

1
16

e2τn

mn

∑
σNσmσv3

F,στσ∆yσnmam,σ.

For the side jump the AHE conductance at the interface is
proportional to the MFP ln of the electrons in the normal
metal film. The electrons which cross from the ferromag-
net to the normal metal do not contribute to the AHE
(for the side jump mechanism).

Skew scattering: in contrast to the side jump, here part
of the important physics happens after the scattering be-
cause half of the skew-scattered electrons propagate back
towards the normal film. Through the skew scattering a
current in the (−y)-direction is created with the rate

dIy,σ

dt
= −vσnmaAH,σIx,σ.

In the ferromagnet this current decays with the rate 1/τσ.
A fraction β/2 of the skew-scattered electrons propagate
back into the normal metal. This factor is due to the fact
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that only half of the scattered electrons move back to-
wards the normal metal. Since they are roughly the dis-
tance l↑/2, l↓/2 from the interface only a fraction β reaches
the normal metal without being scattered in the ferromag-
net. The factor β is less than one and of the order of 1/2.
(If the scattering in the ferromagnet would be isotropic
then β would have the value 1/2.) In the normal metal
the current I i

y,σ decays with the much smaller rate 1/τn

and takes the stationary value

I i
y,σ = − β

32
e2τ2

n

mn
nm

(
aAH,σNσmσv4

F,στσ

)
E = Gi

xy,σE.

This yields a contribution to the AHE conductance which
is proportional to τ2

n, i.e. to the square of the MFP in the
normal metal,

Gi
xy =

β

32
e2τ2

n

mn
nm

∑
σ

(
aAH,σNσmσv4

F,στσ

)
.

(The conduction electrons which are accelerated in the fer-
romagnet and cross into the normal metal after the scat-
tering also yield a contribution to the AHE. However, this
contribution is smaller than Gi

xy,σ by the ratio τσ/τn.)
For skew scattering the additional anomalous Hall con-

ductance Gi
xy at the interface is proportional to the square

of the MFP l2n in the normal metal.

4 Conclusion

In this paper the author suggests the investigation of the
AHE in double layers of a ferromagnetic and a normal
metal film. The MFP in the normal metal N should be
much larger than in the ferromagnet F. An electric field in
the x-direction causes different drift velocities of the con-
duction electrons in the N and F. Electrons which cross
from N to F carry a much larger drift velocity. These elec-
trons introduce a large current density parallel to the elec-
tric field at the top layers of F (within the thickness of
about half the MFP of spin-up and -down electrons, l↑/2
and l↓/2). The resulting current is calculated using the
vector mean free path method. It is proportional to the
MFP in the normal metal. The MFP in N can be mod-
ified by increasing the film thickness of N in situ during
a single experiment. The properties of the ferromagnetic
film remain unchanged.

The injected current experiences scattering by the
magnetic scattering centers in F. This generates an AHE
current component in the (−y)-direction. It yields an ad-
ditional contribution Gi

xy to the AHE conductance. The
two proposed mechanisms for the AHE, side jump and
skew scattering, yield different dependences of Gi

xy on the
MFP ln in the normal metal:

– Side jump: Gi
xy = const1 × ln.

– Skew scattering: Gi
xy = const2 × l2n.

The value of the constants is calculated for perfect trans-
mission through the interface from F to N. A reduced

transmission will reduce the constants but does not change
the dependences on the MFP ln in the normal metal.

In the performance of such an experiment one has to
vary the mean free path of the conduction electrons in
the normal metal. This can be, for example, achieved by
successively increasing the thickness of the normal metal.
The MFP generally increases with the film thickness. Then
one has to plot the total anomalous Hall conductance Gxy

of the F/N double layer versus ln and l2n. For the side jump
the AHE conductance Gi

xy at the interface is proportional
to ln while for skew scattering it is proportional to l2n.

This method has the great advantage that it leaves the
structure, scattering properties and all other parameters
of the ferromagnetic film unchanged. Only the MFP in
the normal metal is altered (generally increased through
successive evaporations). This has a considerable advan-
tage over the traditional method where the MFP of the
ferromagnet is changed by alloying or other methods.

Abbreviations: AHE = anomalous Hall effect, MFP =
mean free path, VMFP = vector mean free path.

The research was supported by NSF Grant No. DMR-0124422.

Appendix A: Vector mean free path
and relaxation time method

In the presence of an electric field E = (E, 0, 0) the Fermi
surface is shifted and the Fermi distribution function fk

differs from the equilibrium distribution f0
k by gk = fk−f0

k
(see Fig. C.1). The resulting current density is

j = (−e)
∑

σ

∫
d3k

(2π)3
gkv (k) .

Chambers expressed gk in terms of the vector mean free
path (VMFP) L (k) [14],

gk = (−e)E · L (k)
(
−∂f0

k

∂E

)
.

The physical meaning of L (k) can be understood as fol-
lows. We consider an assembly of electrons at the time
t at r in volume element d3r with wave vector k in the
k-increment d3k . We follow the semi-classical path r (t′)
of these electrons back in time for t′ < t. The velocity
and wave vector along this path are v (k, t′) and k (t′) as
a functions of time. Along the path electrons are contin-
uously scattered out of and into the state k (t′). At the
time t′ < t in the time interval (t′, t′ + dt′) there is the
probability that the fraction dt′/τ (t′) electrons are scat-
tered into the state k (t′) . The chance that these electrons
propagate along the path r

(
t
)

(t′ < t < t) without being
scattered until the time t when they reach the point r is
P (t, t′) (see also Ashcroft and Mermin [17])

P (t, t′) = exp

(
−

∫ t

t′

dt

τ
(
t
)
)
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Fig. A.1. The propagation of an electron from the normal
metal into the top of the disordered ferromagnet.

and τ
(
t
)

is the relaxation time at the position r
(
t
)

and
in the state k

(
t
)
.

The VMFP is then defined as

L (k) =
∫ t

−∞
P (t, t′)v (k, t′) dt′.

The graphical meaning of the VMFP L (k) is very sim-
ple. If we reverse time and start an electron from position
r (t) with wave vector (−k) and velocity −v (k) then the
average distance this electron travels is equal to the neg-
ative VMFP −L (k) of this electron. (In the presence of a
magnetic field the latter has to be reversed as well.)

If we consider an electron in the normal film with
kz < 0 (moving downward) at the interface with the fer-
romagnet, its VMFP Ln (k) is given by

Ln

(
k,z = 0+

)
=

∫ 0

t0

v (k) e−|t′|/τndt′

= v (k) τn

(
1 − e−dn/vzτn

)

where t0 = −dn/vz = −dnm/ (�kz) is the time for the
electron k to travel from the upper surface of N to the in-
terface, v (k, t) = v (k) is independent of time and diffuse
scattering at the upper surface is assumed. If the thickness
dn of the normal metal is larger than the mean free path
ln in N then the absolute length of Ln (k) is |Ln (k)| = ln.
We treat this case in our calculation and consider below
in the discussion the finite size effect of dn < ln.

In the next step of the calculation we consider the elec-
trons in the very top of the ferromagnetic film with kz < 0
(moving away from the interface). We start with the as-
sumption that all these electrons passed through the inter-
face from the normal metal. During the crossing the wave
vector changes from kn to kσ. But the (x, y)-component of
the wave vector is conserved and only the kz component
is changed so that energy is conserved. This means the
E · kn = E · kσ. Since we use a ferromagnet with much
shorter relaxation times τσ than τn the drift velocity of
the injected electrons will quickly decay as a function of

z < 0 in the ferromagnet. We obtain for L (k,z) with
kz < 0, z < 0:

Lσ (k,z) =
�kn

mn
τne−|z|/vzτσ +

�kσ

mσ
τσ

(
1 − e−|z|/vzτσ

)
.

(4)
Here we assumed a linear relation between velocity and
wave vector with effective masses, mn and mσ.

The current density in the ferromagnet is in terms of
the VMFP

jσ (z) = e2

∫
d3k

(2π)3
(E · Lσ (k,z))

(
−∂f0

k

∂E

)
�kσ

mσ
. (5)

The second term in equation (4) when introduced into
equation (5) yields just the current density of the isolated
ferromagnetic film with diffuse surface scattering. The first
term, however, yields the current which is injected from
the normal metal film into the ferromagnetic film. Its con-
tribution to the current density is

jσ (z) = e2

∫
kz<0

d3kσ

(2π)3

(
E·�kn

mn

)
τn

× e−|z|/vzτf

(
−∂f0

k

∂E

)
�kσ

mσ
.

Using the relation E · kn = E · kσ we obtain

jσ (z) =
e2

�
2τn

mnmσ

∫
kz<0

d3kσ

(2π)3
(E · kσ)

× e−|z|/vzτf

(
−∂f0

k

∂E

)
kσ .

Only the x-component contributes to the current,

jx,σ (z) =
e2

�
2τnk2

F,σ

mnmσ
Nσ

1
4π

∫ π

π/2

sin θdθ

×
∫ 2π

0

dφ sin2 θ cos2 φ exp
(
− mσ |z|

�kF,στσ cos (θ)

)
E

where Nσ is the density of states s-electrons with spin σ
in the ferromagnet.

Integration over dz, dφ and dθ yields the total injected
current per width W of the film (per spin),

Ix,σ =
e2

�
2τnk2

F,σ

mnmσ

�kF,στσ

mσ
Nσ

1
4π

×
∫ π

π/2

sin θ sin2 θ cos (θ) dθ

∫ 2π

0

cos2 φdφE

=
e2

�
2τnk2

F,σ

mnmσ

�kF,στσ

mσ
Nσ

1
16

E

=
1
16

e2Nσv3
F,στnτσ

mσ

mn
E =

e2nστn

mn

3lσ
16

E.

If we take a square film with length L = W then the
applied voltage is EL and the resulting conductance is

Gxx =
1
16

e2Nσv3
F,στnτσ

mσ

mn
=

e2nστn

mn

3lσ
16

.
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Appendix B: Hand-waving derivation
of AHE resistivities

Let us consider an electron moving in the x-direction in
the ferromagnetic film. We draw two planes perpendicular
to the direction of the electron momentum, one at x = 0
and the other at x = lσ. The planes cover an area A.
When we project the scattering cross sections of all scat-
tering centers between the two planes in the volume Alσ
onto the plane at x = lσ the potential scattering cen-
ters yield an area niAlσai and the magnetic scattering
centers yield an area nmAlσam,σ. Together the total area
is Alσ (niai + nmam,σ). Inserting lσ the combined area is
equal to A, which expresses the fact that after propagat-
ing the distance of the MFP the chance to hit an impurity
cross section is equal to one. The total projected area of
the AHE cross section covers the fraction lσnmaAH,σ of
the area A. Therefore the total probability for the elec-
tron to transfer its momentum into the (−y)-direction
during its lifetime τσ is lσnmaAH,σ. The ratio of the two
currents is

j−y,σ

jx,σ
=

σxy,σ

σxx,σ
=

ρyx,σ

ρxx,σ
= lσnmaAH,σ.

Appendix C: Averaged cross sections

In the paper we switch between the discussion of a current
in the x-direction and a momentum k = (k, 0, 0) in the
x-direction. As Figure C.1 points out the current in the
x-direction is carried by the k-states in the surface of the
Fermi sphere whose occupation is altered by the shift of
the Fermi surface (the area in Fig. C.1 which is marked
with the arrows). All these states have Fermi momenta.
The ones on the right side yield a positive contribution and
those on the left a negative contribution. These different
states have different cross sections.

If f
(
k,k′) = f (θk, φk; θk′ , φk′) is the scattering am-

plitude of a plane wave eikr in the direction k′ then the
AHE cross section for an electron state in the x-direction
(kF , 0, 0) is

aAH,σ =
∫

dΩk′

4π

∣∣∣f (π

2
, 0; θk′ , φk′

)∣∣∣2 sin θk′ sinφk′ .

For the current in the x-direction which carries the same
momentum as the state (kF , 0, 0) the contribution of
the states k = (k, θk, φk) to the current is equal to
(3/4π)kF sin θk cosφkdΩk. Here the averaged AHE cross
section is

aAH,σ = 3
∫

dΩk

4π

dΩk′

4π
sin θk cosφk

|f (θk, φk; θk′ , φk′)|2 sin θk′ sin φk′ .

k

kx

y

Fig. C.1. Shifted Fermi surface carrying a current in the
x-direction.

In all final results the averaged cross sections have to be
used. The scattering of the k-state in the x-direction is
only introduced to simplify the discussion of the underly-
ing physics (avoiding the complication of including all the
states which contribute to the current).
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